Announces

19th Post Graduate Course in
Remote Sensing &
Geographic Information System

at
Indian Institute of Remote Sensing
Indian Space Research Organisation
Department of Space, Government of India,
Dehradun, India

Academic Year
2014 - 2015
Governing Board Members

Chairman
Dr. K. Redhakrishnan
India.

Members

Dr. Hong Pong Gi
Democratic Peoples’ Republic of Korea

Dr. Bambang Setiawan Tejasukmana
Indonesia

Mr. Ali Sadeghi Naini
Iran

H.E. Mr. Doulat Kuanyshov
Kazakhstan

Prof. A.A. Abdykalykovich
Kyrgyz Republic

H. E. Mr. Dato Tan Seng Sung
Malaysia

Dr. Batbold Enkhtuvshin
Mongolia

Dr. Kyl Thwin
Myanmar

Mr. Kartar Singh Bhalla
Nauru

Mr. Tirtha Raj Wagle
Nepal

H.E. Mr. Benito B. Valeriano
Philippines

Mr. Ok-Kyu Lee
Republic of Korea

Mr. S. Panawernage
Sri Lanka

The Executive Director
Thailand

Dr. Kamol M. Muminov
Uzbekistan

Observers
Dr. (Mrs.) Mazlan Othman
UN-OOSA

Prof. Dr. Ir. A. (Torn) Velckamp
ITC, The Netherlands

Secretary
Dr. Y.V.N. Krishna Murthy
Director, CSSTEAP, India
CONTENT

Introduction
About Regional Centre for Asia and the Pacific in India
Educational Programme and Courses
Academic Activities
Programmes Conducted
19th P.G. Course In RS and GIS – Important Dates
Who can apply?
How to apply?
Eligibility for Admission
Selection Procedure
About Host Institute
Faculty
Medium of Instructions
Teaching Methods and Facilities
Technical and Educational Visits
Performance Evaluation
Award of Diploma/Degree
Course Expenses
Financial Assistance to Participants from Government of India
Insurance
Life at Centre
RS & GIS Course at a Glance – Phase I
Phase II, One Year Project
About the City
Alumni Meet
Course Content
Application Form
INTRODUCTION

Space technology plays a very important role in improving the quality of life of today's human society for information and decision making. Most noticeable are communication, television, telemedicine, satellite navigation, remote sensing data, weather forecasting, disaster mitigation, through emergency mapping, etc. All countries, irrespective of rich or poor, have realized the importance of space technology for improving the living conditions of their citizens. Therefore, all countries should have access to space technology and must share the equitable benefits. The global satellite data availability has made it possible for all countries to get benefits. However, a major precondition to successful space technology applications is the development of essential indigenous capabilities, particularly human resources. A consensus emerged within the international community that if effective assimilation and appropriate application of space technology are to succeed in the developing countries, efforts must be made at different levels for capacity building in space technology. Towards this, the United Nations General Assembly called for the establishment of Centres for Space Science and Technology Education at the regional level in the developing countries. Under the auspices of the United Nations, through its Office for Outer Space Affairs (UN-OOSA), the five regional Centres established are Asia and the Pacific (India), Latin America and the Caribbean (Brazil and Mexico), Africa (Morocco and Nigeria), and West Asia (Jordan). All the Centres are affiliated to the United Nations through UN-OOSA.

ABOUT REGIONAL CENTRE FOR ASIA AND THE PACIFIC IN INDIA

The Centre for Space Science and Technology Education in Asia and the Pacific (CSSSTEAP) was established in India in November 1995 with its headquarters in Dehradun and is the Centre of Excellence. The first campus of the Centre was established in Dehradun, India at Indian Institute of Remote Sensing (IIRS), which is a unit of Indian Space Research Organization (ISRO), Government of India. For conducting its Remote Sensing & GIS programmes, the Centre has arrangements with IIRS as a host institution. The Centre has also arrangements with Space Applications Centre (SAC) Ahmedabad, playing as host-institution for programmes related to Satellite Communications, Satellite Meteorology and Global Climate and Physical Research Laboratory (PRL) Ahmedabad for Space and Atmospheric Science.

The Centre has been imparting training and education, helping participants in developing research skills through its Master Degree, Post Graduate and Certificate Programmes. This is achieved through rigorous class-room (theory and hands-on exercises), group discussions, field campaigns and pilot projects in the field of space science and technology. These programmes aim at capacity building for participating countries, in designing and implementing space-based research and application programmes. The Centre also fosters continuing education to its alumni.

"It should be emphasized that the overall mission of the centres is to assist participating countries in developing and enhancing the knowledge and skills of their citizens in relevant aspects of space science and technology in order that such individuals can effectively contribute to national development programmes."
EDUCATIONAL PROGRAMME AND COURSES

The educational programme of the Centre is oriented towards the dissemination of knowledge in relevant aspects of space, science, and technology. The emphasis of the Centre is to deliberate on education and research for natural resource management along with linkages to the global programmes/databases, pilot studies, continuing education & awareness and appraisal programmes. The curriculum has been developed under the auspices of the UN Office for Outer Space Affairs (UN-OOSA) and the guidelines emerged from the meetings held for Education Curriculum Development for the Centre at Granada, Spain in February/March 1995. These curricula are reviewed periodically by an International Advisory Committee. The activities of the Centre are guided by a Governing Board, Academic Advisory Committee and Board of Studies.

ACADEMIC ACTIVITIES

The academic activity is divided into two phases. Phase-I is of 9 months' duration and executed at the Centre in India. After successful completion of the Phase-I, the participants are encouraged to take up Phase-II research project of one year duration in their home country. Phase-II allows participants to take up research project relevant to their home country or organization and apply the technologies.

If desired by the candidate, the candidate can submit one year research project to Andhra University, Visakhapatnam, India for Master of Technology Degree (M. Tech. Degree). The eligibility criteria of the university will apply.

(i) Post Graduate programme: P.G. Diploma Courses of nine months duration are organised in the following disciplines:

- Remote Sensing and Geographic Information System (RS and GIS) (at IIRS, Dehradun)
- Satellite Communications (SATCOM) (at SAC, Ahmedabad)
- Satellite Meteorology and Global Climate (SATMET) (at SAC, Ahmedabad)
- Space and Atmospheric Sciences (SAS) (at PRL, Ahmedabad)

Core Modules (Semester I and II) emphasize on the development and enrichment of the basic knowledge and skills of the participants in the technology. This is followed by pilot study, which provides an opportunity to fine-tune the skills for executing theme-based study.

(ii) Master programme: This programme gives an opportunity and continuity in developing higher research skills for those who have completed successfully the nine months P.G. Course. This is subject to qualifying for admission requirements of Andhra University, Visakhapatnam. A research project by the scholars is conducted and executed in their respective countries with a view to transfer the technology in
RECOGNITION OF MASTER PROGRAMME
The Centre is an agreement with Andhra University (est. 1909) Vishakhapatnam, India for award of M. Tech. degree. The terms and conditions of this agreement are reviewed from time to time.

his/her organization. It will also be a test of the methodology and knowledge assimilated during phase-I at the centre.

A few meritorious students, after successful completion of P.G. Course are considered for award of additional fellowship of six months to one year to complete part of their research work at Centre's host institutions in India which may lead to a M. Tech. Degree of Andhra University.

(iii) Short Courses: Besides P.G. level courses, the centre also conducts short term courses of two to four weeks duration in specific themes of above subjects regularly.

PROGRAMMES CONDUCTED
The Centre has so far conducted 41 post graduate courses, 17 on RS&GIS, eight each in SATCOM, SATMET and Space Science. The Centre also conducted 24 short courses/Workshops in the last 17 years. These educational programmes have benefited 1260 participants from 34 countries in the region and 28 participants from 17 countries outside Asia Pacific region. Eighteenth RS & GIS course at IIRS Dehradun and ninth Satellite Communication course at SAC Ahmedabad are in progress.

NEXT COURSE: 19th P.G. COURSE IN RS & GIS
Duration: July 1, 2014 to March 31, 2015
Venue:
Indian Institute of Remote Sensing
Indian Space Research Organization
Department of Space,
Govt. of India
Dehradun - 248 019
Uttarakhand, INDIA

Number of seats: 23
Last date of receipt of applications: February 01, 2014

IMPORTANT DATES
Last date for receipt of applications: 1st February 2014
Information of selection: 31st March 2014
Commencement of course: 1st July 2014
Completion of PG diploma (Phase-I): 31st March 2015

WHO CAN APPLY?
The course is designed towards the professionals and specialists working in the university, system, educational institutes, and involved in active research in Natural Resources (biological and physical) and Environmental management. It is strongly expected that the participating scholars will be able to:

- Serve as catalysts for furthering the skills and knowledge of other professionals in their countries.
- Contribute to policy making, planning, development and management of Remote Sensing & GIS and its applications in their countries.
- Enhance the self reliance of their countries so as to lessen dependence on external experts.
Applications are invited from candidates in countries of Asia and the Pacific Region for the 19th P.G. Course in RS and GIS (www.cssteap.org). All the candidates need to be sponsored (i.e. endorsed) by recognized institutions (e.g. ministries or universities in their respective countries). Sponsoring institutions/authority should ensure that on return, the scholar will be given an opportunity to work in a development oriented activity in the area of newly acquired knowledge and skills. The execution of a one year project work in their respective countries is the beginning of this process and it is assumed that sponsoring authority will facilitate one year research project in the home country. However, the Centre will provide long distance technical guidance. A limited number of short (4-6 months) and one year duration fellowships may be made available to meritorious participants to complete Phase-II Research Project work in India.

Please submit the duly filled application form through the CSSTEAP Governing Board member of your country to the Indian Embassy/High Commission in your country (For list of the members please see inside of the front cover page). However, the applicants from non-Governing Board Member countries need to submit completed application forms to the Centre through the Embassy/High Commission of the respective country in New Delhi, India. The application should be completed in all respects and accompanied by attested and/or certified copies of all the certificates (School, Bachelor and Master, TOEFL, English Proficiency, etc.). Wherever, these certificates are issued in a language other than English, the same must be translated in English and certified by the Head of the organization or provide English transcription of all such documents. However, an advance copy may be forwarded at the following address for advance action and follow-up at this end.

Course Director
CSSTEAP-RSGIS-19
Indian Institute of Remote Sensing, ISRO
Department of Space, Govt. of India
4, Kautilya Road, Dehradun - 248 001
Uttarakhand, India

Phone: +91 135 2324226
Fax: +91 135 247765
Email: cssteap@irs.gov.in
Website: www.cssteap.org

To download application form or to know more about CSSTEAP, its past and future programmes, list of participants and countries who have benefitted from these and the Pilot Projects carried out through these programmes, please visit us at www.cssteap.org
ELIGIBILITY FOR ADMISSION

Master's degree in science or Bachelor's degree in engineering or equivalent qualification relevant in the field of study with at least 5 years of experience in teaching/research or professional experience in the field of natural resources or environment, e.g., agriculture, soils, forestry, ecology, geosciences, water resources, human settlement, land use planning, oceanography, environmental analysis, etc. (For candidates with higher qualifications, the minimum experience may be relaxed). Graduate-level knowledge in mathematics and/or statistics is essential besides the Master degree as base qualification.

Important

The applicants are advised to bring original documents including academic testimonials for verification at the time of reporting in India

SELECTION PROCEDURE

The Centre will select the candidates through a well laid procedure, which includes satisfying academic eligibility, proficiency in English language, funding/forwarding by sponsoring authority/organization, country representation, etc. Only selected candidates will be intimated by 31st March 2013 and list of selected candidates will also appear at Centre's web-site (www.cssteap.org). Preference in selection will be given to those candidates whose expenses are borne by the candidate/sponsoring agency. Once a candidate has been sponsored and admitted, the sponsoring authority/organization or candidate need to inform at least 15 days in advance for withdrawal or cancellation of the candidature. If the sponsoring authority wishes to call back its candidate for any unknown reasons after joining the Centre or in the middle of the course, the travel cost need to borne by either sponsoring authority or by the candidate itself.

ABOUT HOST INSTITUTE

The IIRS (Est. 1966) is a unit of Indian Space Research Organization, Department of Space, Government of India and is mandated for education/training in Remote Sensing, Geoinformation Science and GPS technologies. It is a premier institution in imparting training and education in basic technologies and their applications for natural resource management. The institute has very strong R&D programme. The endeavour of the institute has been to bring young, middle as well senior thematic experts from user communities to educate/apprise about technology/applications at Post Graduate level with the overall goal of ‘technology transfer’ and user awareness. The institute has evolved many programmes tuned to the different needs of various target groups. IIRS addresses the cause, awareness, and research needs at different levels of management, and therefore, conducts a variety of courses for the different categories of users and fresh students viz., M.Tech., M.Sc., PG Diploma, 4 months Certificate Courses, 2 months National Natural Resource Management System (NNRMS) sponsored courses for University faculty, 2 weeks on demand Special Courses, 1 week duration Overview Course
for Decision Makers and tailor-made courses for users departments from India and abroad. IRS has so far trained more than 8000 scientists/engineers. About 1000 foreign students from various countries of Asia and Africa have also benefitted by IRS under SHARES Fellowship programme of the Department of Space, ITEC/SCAAP fellowship scheme of the Ministry of External Affairs, Government of India, other fellowship schemes, etc. For further details visit http://www.irrs.gov.in

FACULTY

Centre’s core faculty is drawn from IRS and also from other centres of ISRO, universities and premier agencies from India and abroad. They have long and varied experience in the field of RS & GIS technology and its applications. The faculty has a strong scientific background with a number of research publications, experience of participating in international scientific programmes, organizing a number of courses, etc. to their credit. A few visiting international experts are also invited to deliver lectures on advance and specialized topics. Experts from USA, UK, The Netherlands, Germany, Thailand, Australia, Japan, UN-OOSA, UN-ESCAP, UN-SPIDER etc. have delivered lectures.

MEDIUM OF INSTRUCTIONS

The medium of the instructions/teaching is English. Proficiency in written and spoken English is most essential. The candidates who are not proficient in English are advised not to apply. Applicants who have completed their higher studies in a medium (language) other than English, are required to submit TOEFL score or a diploma/certificate of English language issued by an accredited language institution or by the local UNDP for satisfactory establishment of the applicant’s competence in spoken and written English language. Preference will be given to those who secure high score in TOEFL examination.

TEACHING METHODS AND FACILITIES

Modern facilities exist at the Centre for class-room teaching and practical instructions/demonstrations. Printed as well as digital course material of the lectures is supplied. The teaching methods include class room lectures, video lectures, computer based training packages, laboratory experiments, group discussions, demonstrations, seminar presentations and field work/case studies (as applicable). Computer-based interactive multimedia packages are also available for self learning/ revision. The laboratories are equipped with latest Image processing and GIS software. Each participant is given individual computer system with Internet connectivity. One of the major strengths of the institute is its library with latest subject literature, text books, e-books and online-journals, etc.

TECHNICAL & EDUCATIONAL VISITS

As a part of the course curriculum, the participants will have the opportunity to visit different centres of ISRO / Dept. of Space, Govt. of India and other organizations concerned with Remote Sensing and GIS related research.
Performance Evaluation

The performance of the participants is assessed through written, interactive sessions and/or computer-assisted practical exercises. Independent assessments of theory and practical exams are conducted by external and internal faculty. The participants need to pass each examination paper. Participants who fail to qualify in the examinations in the nine months course may be considered for award of only a "Certificate of Attendance" by the Centre.

Award of Diploma/Degree

On successful completion of the Phase-I study, i.e. nine-months course, the participants will be awarded Post Graduate Diploma. Certificate of Attendance will be given to the candidates who fail to qualify. If the participant is able to complete Phase-II project work, i.e. research project in home country satisfactorily within four years of joining the PG course, the candidate can avail the opportunity to submit the work to the Andhra University (India) for award of M.Tech. Degree.

COURSE EXPENSES

The overall expenses of the course are given below, this is besides the international travel (to and from city of the course participant to course venue):

- Course Fee: US $ 6000 per participant
- Local tours: US $ 1200 per participant
- Living expenses: US $ 1100 per participant

The participants are expected to find suitable sponsorships or funding for meeting these expenses while attending the course in India. Preference will be given to such candidates.

Financial Assistance to Participants from Government of India

For this course, Government of India (GOI) has offered to bear the course fee of US $ 6000 per participant from the Asia-Pacific region to the selected candidates by the Centre. Thus no course fee is payable by the selected participants from the Asia-Pacific region. GOI will provide financial assistance to few of the selected candidates as mentioned below:

- Living expenses in India: INR 16,000 per month for the duration of 9 months.
- Book allowance: INR 2,000 per (one time)
- Project allowance: INR 1,500 (one time)
- Local tour expenses: Up to INR 50,000

Support from UN-ESCAP

UN-ESCAP has been providing financial assistance to CSSSTEAP education programmes and has extended travel grants to a good number of course participants since its inception. This contribution by UN-ESCAP is highly supportive to the overall activities of the Centre.
The Centre would be trying to obtain financial assistance for international travel for a limited number of participants of the Asia-Pacific region through agencies like UN Office for Outer Space Affairs (UN-OOSA), UN Economic and Social Commission for Asia and the Pacific (UN-ESCAP).

INSURANCE

Medical, life and disability insurance should be undertaken before leaving their country for India by the participants themselves or on their behalf by their sponsoring institute/organization for covering entire health and disability risks. No medical expenses will be borne by the Centre. However, participants who receive the Fellowship of the GOI will be paid medical expenses for minor ailments on actual basis (as out patients only) as and when such expenses are incurred. The Centre will have limited liabilities as far as medical expenses are concerned in such cases. Candidates in sound physical and mental health only need to apply.

Medical Fitness Certificate from Authorised Government Medical Officers covering status of Eye, Ear, Throat, Heart, Lungs, Liver, Spleen, Hydrocele, Skin & V.D., Hepatitis, HIV, Yellow Fever and other contagious diseases be enclosed with the application form. In case any information requiring medical attention is hidden and is found during the course, the Centre will be obliged to send the candidate back home at any case. The travel cost will be borne either by the sponsoring authority or by the candidate itself.

LIFE AT CENTRE

It is mandatory for all the course participants to stay in the Centre's hostel situated in the IRS Campus. This gives an opportunity for participants to interact and share their knowledge and cultural values. Accommodation on single occupancy basis is provided to all the selected participants. The campus is equipped with good living facilities like independent kitchenette, gymnasium, tennis court, etc. A sum of INR 1500/- per month is to be paid by the participant towards the accommodation. Boarding and other expenses are to be borne by the participants themselves. Since India is country of festivals, the participants get to know about different colorful festivals throughout the year.

RS&GIS COURSE AT A GLANCE

Phase-I of RS and GIS Course is divided into two Semesters. Semester-I of 6 months duration and consists of modules covering RS, image interpretation, and analysis, Photogrammetry, GPS, GIS, advanced-DIP, RS & GIS and environmental assessment & monitoring. Semester-II is of 6 months duration and consists of two modules, module-I of 2 months focuses on application of RS and GIS in thematic disciplines namely; Agriculture and Soil, Forest Ecosystem Assessment & Management, Geosciences & Geohazards, Marine & Atmospheric Science, Water Resources, Urban & Regional Studies, Satellite Image Analysis & Photogrammetry and Geoinformatics. In module-III of 3 months duration each scholar has to formulate and execute a Pilot Project under the guidance of the faculty. These three modules are described briefly ahead.
PHASE II: ONE YEAR PROJECT

Each participant after completing Phase-I of the course, will have to carry out an approved project in his/her home country for a period of one year. This is to be formulated jointly by the scholar and his/her advisor at the Centre during Module 3 of Phase I in an area relevant to the interest of the sponsoring institution/country. The sponsoring institution/country is obliged to guarantee on the return the project to the Centre.
ABOUT THE CITY

Dehradun city, often called as Doon Valley, is at base of chain of one of tallest mountains in the world in Western Himalayas in northern India. It is one of the educational hubs in India. Weather is moderate during March to May. The hill station Mussoorie, the Queen of hills, is 30 km from here and experiences snow during winter. Fairly heavy monsoon rains (average annual rainfall 2000 mm) prevail during June to September. Winter is severe during the month of December to February (minimum temperature occasionally touches 1 to 2 degree Celsius). The valley has good greenery and is surrounded by dense tropical to temperate forests and grasslands and provides pristine environment for academic pursuits. IRS Campus is about 6 km from Dehradun railway station and about 30 km from Jolly Grant Airport Dehradun. The place is well connected by train from New Delhi, Kolkata (Calcutta), Mumbai (Bombay), Lucknow and by road from New Delhi. By air it is well connected with Delhi, Haridwar and Rishikesh, the two famous pilgrimage centres are about 60 and 40 km, respectively, from city. The Western Himalayas are well known for wonderful landscape, mountaineering, trekking, trails and river rafting.

Several important national organizations/institutions are located here. Some of important ones are: Indian Council of Forestry Research and Education, Indira Gandhi National Forest Academy, Forest Survey of India, Wildlife Institute of India, Survey of India, Oil and Natural Gas Corporation Limited, Central Soil and Water Conservation Research and Training Institute, Botanical Survey of India, Zoological Survey of India, etc. There are a large number of tourist places in and around the city.

Alumni Meet

Alumni meets are organized to develop a network and to establish meaningful linkages between CSSTEAP, faculty and its past students. These are aimed to provide common platform to interact and apprise about the latest development in the space technology and its applications. Such meets were held in Nepal, Bangladesh, Sri Lanka, Bhutan and Myanmar in the past. The centre proposes to hold 2-3 such meetings in coming years in different countries.
Course Content

Module-IA

<table>
<thead>
<tr>
<th>Sub-Topic</th>
<th>Major Topics (Theoretical)</th>
<th>Major Topics (Practical/Exercise/Demonstration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Remote Sensing</td>
<td>Interaction between EM Radiation and matter; RS System; Active & Passive Imaging & Non-Imaging Systems; Concept of Resolution; Spatial, Spectral, Radiometric & Temporal; Orbits and Platforms for Earth Observation; Physical basis of spectral signatures of the objects; data reception; processing; image quality & structure; Thematic and Microwave remote sensing.</td>
<td>Study on spectral and image characteristics of optical, thermal & microwave remotely sensed data for characterization; major earth features; study on spectral signatures of objects using ground truth instruments; Radiometers, Spectrometers.</td>
</tr>
<tr>
<td>1.2 Image Interpretation & Analysis</td>
<td>Principles of visual interpretation of aerial photographs and satellite images; Mathematical concepts; mathematics & statistics used in digital image processing (DIP); Principles of DIP techniques: rectification, enhancement, classification, feature selection & quantification; image transformation; spectral indices; accuracy assessment; etc.</td>
<td>Visual interpretation of land cover details from aerial photograph and satellite images; DIP exercises: Image registration, Image enhancement & spectral indices; Image classification (supervised & unsupervised) & classification accuracy assessment.</td>
</tr>
<tr>
<td>1.3 Photogrammetry</td>
<td>Basics of aerial Photography; stereoscopy & parallax vision; stereoscopic parallel; stereophotogrammetry; Analytical Photogrammetry; Camera calibration and co-planarity conditions; Concept of Orthoimage Matrix; Introductory concepts in Digital Photogrammetry; Satellite Based Digital Photogrammetry; Concept of DEM, DSM and DTM accuracy assessment and Orthoimage generation.</td>
<td>Stereoscopic interpretation of aerial photographs; Determination of height using aerial photographs; Familiarization with Digital Photogrammetry; Feature extraction; Generation of DEM and orthophoto.</td>
</tr>
<tr>
<td>1.4 GIS Information Systems</td>
<td>Spatial information system overview; Hardware and Software requirements of GIS; Conceptual Model of Spatial & Non-Spatial Information; Spatial data analysis (vector & raster based); network analysis; data quality & errors; Fundamental Concepts of GIS; Map projections, resource surveys, mapping & navigation, DEM, Interpolation & DATA derivatives; overview of spatial data infrastructure.</td>
<td>Working with GIS software; Preparation and organization of spatial and non spatial data in GIS; digitization & editing; Query & analysis; Spatial data analysis (vector & raster based); DEM, network analysis; Familiarization with different types of GIS receivers: aerial survey.</td>
</tr>
</tbody>
</table>

Module-IB

<table>
<thead>
<tr>
<th>Sub-Topic</th>
<th>Major Topics (Theoretical)</th>
<th>Major Topics (Practical/Exercise/Demonstration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 Recent Trends in RS and GIS Environmental Assessment and Monitoring</td>
<td>Principles & applications of Hyper-spectral & Laser RS, and SAR Interferometry; Advances in DIP; Concept & approaches of Multi-criteria decision making; GIS customization concepts; Concepts & applications of Geostatistics, Satellitic Meteorology; Concept of Multi Sustainable Development &; Integrated Resource Management for sustainable development; Global environmental change and its impact; Natural disasters; geological, environmental & hydro- meteorological; Biodiversity characterization & management; Urban and coastal zone monitoring and management; Watershed management.</td>
<td>Advance DIP techniques e.g. Fuzzy, ANN, Expert system; Image Segmentation etc; SAR Interferometry and its applications; Analysis of Hyper-spectral satellite data; GIS customization concepts; Concept and approaches of Multi-criteria decision making; Geostatistics.</td>
</tr>
</tbody>
</table>

Module-II (optional electives, one to be chosen)

<table>
<thead>
<tr>
<th>Sub-Topic</th>
<th>Major Topics (Theoretical)</th>
<th>Major Topics (Practical/Exercise/Demonstration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Agriculture & Soils</td>
<td>Agriculture, land use mapping following visual and digital analysis; soil characteristics & analysis; soil classification; morphological characteristics; soil taxonoy; soil resource mapping; soil and land suitability.</td>
<td>Agriculture, land use mapping following visual and digital analysis; soil characteristics & analysis; soil classification; morphological characteristics; soil taxonoy; soil resource mapping; physiographic analysis; land evaluation.</td>
</tr>
<tr>
<td>2.1.1 Land Use & Soil Resource Management</td>
<td>Concept & issues of sustainable agriculture; land use/land cover analysis; impact on biogeochemical & hydrological cycle; soil characteristics & pedogenesis; soil resource mapping; RS in soil survey & mapping; digital soil mapping; soil classification; soil morphology; soil taxonomy; land evaluation; land capability classification; soil & land suitability.</td>
<td>Crop inventory & assessment; crop identification; area estimation; crop yield analysis; crop management; precision agriculture; remote sensing modeling; mechanization RS in crop mapping; ICT applications in agriculture; relational agri-database; renewal of biophysical and socio-economic aspects; productivity contrast analysis; decision support systems.</td>
</tr>
<tr>
<td>2.1.2 Agri-Informatics</td>
<td>Contingency & assessment; crop identification; area estimation; condition assessment using digital techniques; crop condition & stress; Demonstration on use of Hyper-spectral data in crop inventory; SAR data analysis; SSRS for crop input optimization.</td>
<td>Crop identification, area estimation and condition assessment using digital techniques; crop condition & stress; Demonstration on use of Hyper-spectral data in crop inventory; SAR data analysis; SSRS for crop input optimization.</td>
</tr>
<tr>
<td>Subject</td>
<td>Useful Topics (Theory)</td>
<td>Useful Topics (Practical/Interdisciplinary)</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>2.1.3 Environmental Soil Science</td>
<td>Land degradation; factors, processes, & RS use; Watershed characterization; sediment, soil erosion, conservation monitoring, and impact; soil quality indicators, measurement & assessment; soil carbon sequestration; soil biogeochemical cycle, soil pollution; soil nutrient management and impact of climate change on soil; precision agriculture, cropland management, agricultural systems, and evaluation methods; FAO-UNESCO land use planning;</td>
<td>Digital analysis of degraded land mapping; GIS applications for soil erosion inventory & modeling; Land evaluation and sustainability analysis; Waterhed analysis-orientation and soil conservation planning; soil erosion modeling; MCA approach for agricultural land use planning; soil quality indicator; vulnerability analysis.</td>
</tr>
<tr>
<td>2.1.4 Satellite Agrometeorology</td>
<td>Agrometeorological factors & considerations; Agrometeorological parameters; retrieval from satellite; crop yield modeling & production forecasting; integrating RS & crop growth models; regional crop growth assessment & forecasting; global energy balance & early warning system; Land surface climate; impact of climate change and variability on agriculture; climate change mitigation and adaptation strategies.</td>
<td>Groom & rainfall climatology analysis; surface temperature, rainfall, biophysical parameter estimation from satellite; regional; evapotranspiration; crop water requirement; crop yield estimation from satellite; climate change impact on crop productivity; early warning measurements & simulation of water & C02 exchange.</td>
</tr>
</tbody>
</table>

2.2 Forest Ecosystem Assessment & Management:

| 2.2.1 Forest Mapping & Monitoring | Forest mapping: distribution, types, status & classification; Special properties of vegetation; spectral indices; Visual & digital analysis of satellite image for forest cover type mapping; forest change detection; forest fire management & monitoring; Vegetation parameters: growing season, green season, broadleaf forest detection; hyperspectral and Microwave RS in forestry; LiDAR RS for tree height determination; biophysical spectral response based forest canopy density mapping. | Forest mapping & density assessment using RS data using visual & digital techniques; Forest cover change detection; Hyperspectral Microwave and LiDAR interpretation techniques. |

| 2.2.2 Forest Inventory | Principle of forest inventory; Sampling theory & design; Forest mapping & density assessment using RS data; Stock mapping for preparation of forest management plan; Forest cover change detection; forest growth stock biomass & carbon estimation; statistical data analysis; Fuel wood and fodder resource assessment; Use of optical, radar & LiDAR in growing & biomass assessment. | Measurement of tree height and crown density; Forest sampling techniques; Growing stock estimation; statistical data processing and geostatistical analysis & modeling. |

| 2.2.3 Forest Informatics | Modeling approaches in forestry; Geoinformatics for Forest working plan; Fire ecology, detection, risk & modeling; Geo-spatial technology for wild life habitat; protected areas; habitat suitability models & modeling; Forest degradation assessment and monitoring. | Site suitability analysis for forestry; Revision and updating of stock maps; GIS database creation for forest management; Forest fire risk modeling; Wild life habitat analysis; forest degradation assessment. |

| 2.2.4 Forest Ecosystem Analyses | Forest ecosystem principles & concept; Landscape & ecosystem analysis; Biodiversity characterization & landscape level; Forest, environment & climate change impacts on forest & biodiversity, habitats; environmental policy & strategy; Environmental impact assessment (EIA); Wetland monitoring & conservation planning; biodiversity conservation planning. | Landscape analysis; phytosociological analysis; biomass productivity assessment; vegetation cover; precision modeling; biodiversity characterization; EIA case study. |

2.3 Geosciences & Geo-hazards:

2.3.2 Data Processing & Analysis for Geosciences	DGP for geological applications; Landform analysis based on satellite data; interpretation; hyperspectral & microwave; data processing for minerals, alteration zone; terrain mapping, crustal deformation & landslides; Geodatabase creation, geospatial analysis; output generation; CDM and 3D data handling for geological applications & unwrapped analysis; Applied statistics & geostatistics.	Geomorphological Mapping; hyperspectral and MW image analysis for mineral; DGM; crustal deformation and landslides studies; data fusion & change detection for surface change analysis; geological database organization with analysis; terrain analysis & terrain parameter extraction multivariate statistics.
2.3.3	Applied & Tectonic Geomorphology	Geomorphic processes & landform evolution; tectonic geomorphology; fluvial systems; karst systems; Freshwater geology; land system analysis; applied geomorphological mapping; geomorphic classification systems; climate tectonic relationship and transform dynamics.
2.3.4	Engineering Geology & Ground Water	Engineering geology & mass movement types; classification of landslides & modeling; Engineering geological site investigations and environmental impact assessment of dams & reservoirs; Principles of RS in hydrogeological mapping and groundwater exploration; RS & GIS in ground water exploitation and management in hard rock/unconsolidated material; Groundwater Management; Artificial Recharge and Rain Water Harvesting; Groundwater quality.

2.4	Urban & Regional Studies	Geologic & Geomorphologic Interpretation; Fossil landform mapping & analysis; Glacial & shore cliff mapping; slope position identification; glacier landform mapping; tectonic landform mapping and analysis; applied geomorphological mapping.
2.4.1	Fundamentals of Urban & Regional Planning	Concept of settlement planning; town planning practices; urban & regional planning models; preparation of development plan (urban planning); regional & zonal plans; image interpretation of urban areas; urban land use planning; urban land use classification system; accuracy assessment; case map and cadastral maps for urban areas; photo-mosaic; ortho-mosaic; base print map; RS & GIS for property for assessment.
2.4.2	Geo-Spatial Technologies in Urban Area Analysis	Urban sprawl: urban & spatial analysis; census operation & population studies; population estimation through RS; concept of urban edge: techniques of space use mapping; quantitative techniques for urban analysis techniques in human geography; analysis of spatial data, structuring spatial relationships.
2.4.3	Urban Resources, Services, and Facilities Analysis	Geoinformation technology for urban utility mapping; solid waste management; urban hydrology; water supply; urban hazard & risk assessment; urban geology for hazard identification; multi-risk assessment; damage assessment due to earthquake, fire & explosion; traffic & transportation studies; geo-spatial technologies in route alignment studies; urban resources studies; spatial distribution of resources; urban energy consumption & sustainability.
2.4.4	Geo-Spatial Technologies for Urban Environmental Studies	Object based image analysis for urban areas; visualization of 3D natural world for urban designs; ANVIZ for modeling urban growth; mobile mapping; LIDAR, LiDAR for urban surface modeling; concept of CA in urban growth studies; Climate change, diseases & human health; urban heat island, urban microclimate, urban pollution; urban forestry, multi-criteria techniques in land evaluation & suitability analysis; urban & rural information system.

2.5	Marine & Atmospheric Science	Identification of urban objects using satellite images on different scales; interpretation & delineation of urban areas; Population estimation, Urban growth monitoring, urban LUC & classification system.
2.5.1	Coastal Processes & Marine Ecology	Urban sprawl mapping; census updating & population estimation techniques; space use mapping: supervised & unsupervised classification of urban areas; various statistical techniques of data analysis.
2.5.2	Atmospheric & Ocean Dynamics	Demographic analysis; mobile mapping & updating maps; urban plan monitoring & change detection; urban noise survey; mapping & analysis; U.S. & world GIS design & implementation; GIS & mobile GIS.

| 2.5.3 | Visual & Digital analysis of satellite images in mapping coastal features; Coastal landform analysis and mapping shoreline changes; Coastal zone density measurement; circulation pattern, bathymetry, suspended sediment analysis etc. biogeocycle model. |

| 2.5.4 | Rainfall data analysis; atmospheric dynamics, ocean dynamics. |

<p>| 2.5.5 | Rainfall, water analysis; atmospheric dynamics, ocean dynamics. |</p>
<table>
<thead>
<tr>
<th>Subtopic</th>
<th>Major Topics (Theory)</th>
<th>Major Topics (Practical/Exercises/Case studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Satellite Oceanography</td>
<td>Principles of ocean RS, visible RS of ocean; retrieval of phytoplankton, suspended sediment, chlorophyll, salinity, temperature, depth; data quality analysis</td>
<td>Computation of in situ underwater optical data; retrieval & analysis of sea surface temperature from thermal & MW data; albedo estimation; retrieval of wind fields from scatterometer observation.</td>
</tr>
<tr>
<td>2.5.4 Satellite Meteorology</td>
<td>Principles of atmospheric RS; Metereological analysis; satellite imagery; image interpretation; earth radiation budget etc.</td>
<td>Satellite imagery; interpretation of meteorological phenomena; retrieval of aerosols, rain, snow, optical depth etc.</td>
</tr>
<tr>
<td>2.6 Water Resources</td>
<td>Hydrological cycle & its components; concept of watershed; RS & GIS applications; rainfall & runoff modeling & estimation; estimation of parameters from thermal & MW data; water quality analysis</td>
<td>Watershed delineation; statistical & spatial analysis of precipitation using RS, rainfall, soil moisture, ET, runoff; ground water & surface water body mapping & water quality analysis; snow cover mapping; snow melt runoff modeling; climatic water balance calculations.</td>
</tr>
<tr>
<td>2.6.2 Watershed Analysis & Planning</td>
<td>Watershed hydrology; Terrain indices for water resources assessment; DPM derivatives; soil erosion processes & modeling; sediment yield modeling using empirical & process-based models; watershed precipitation & conservation planning; urban hydrology; water distribution system & modeling; RS & GIS in urban hydrological processes</td>
<td>Watershed characteristics; morphometric analysis & GISH; DEM generation from optical and InSAR techniques; soil erosion modeling; water shed conservation planning using RS & GIS; urban hydrological modeling.</td>
</tr>
<tr>
<td>2.6.3 Water Resources Development</td>
<td>Site suitability for water resource projects; water harvesting structures, database required and decision rules; EA of river valley projects; Irrigation infrastructure development, performance evaluation & evocative water use planning; water logging & salinity in irrigation command; ground water targeting & modeling</td>
<td>Database creation & identifying suitable sites for WRS, hydro power projects using RS & GIS; EA of river valley projects; snowmelt runoff modeling; crop water requirement calculation; mapping & monitoring of waterlogged & saline areas; ground water targeting & modeling.</td>
</tr>
<tr>
<td>2.6.4 Water Resources Management</td>
<td>Reservoir sedimentation; suspended sediments; sedimentation rate through RS, flood hydrology damage assessment & risk zone mapping; flood inundation mapping & modeling; drought monitoring & assessment; climate change scenarios; dynamic & statistical water resources; glacier retreat & global lake mapping; modeling of climate change scenarios & modeling issues; integrated water resources management</td>
<td>Monitoring of reservoir sedimentation; flood peak flow estimation; hydrology modeling; flood flow estimation; flood inundation; flood mapping & modeling; drought assessment; analysis of hydro-meteorological parameters; glacier retreat mapping & hydrological modeling for climate change scenarios.</td>
</tr>
<tr>
<td>2.7 Satellite Image Analysis & Photogrammetry</td>
<td>Hyper spectral RS, noise & data dimensionality reduction; data quality, radonometric & atmospheric corrections for multispectral & hyperspectral sensors; concepts of radiative transfer theory; retrieval of biophysical parameters: spatial based thermal imaging system, retrieval of geo-physical parameters using thermal sensors, meteorological sensors in atmospheric sounding, meteorological parameters.</td>
<td>Retrieval of geo-physical parameters using thermal data; radiative transfer modeling; atmospheric correction of hyperspectral & MSS data; spectral library creation; and member selection & classification, ground data collection.</td>
</tr>
<tr>
<td>2.7.1 Remote Sensing-I</td>
<td>Advanced classification; fuzzy classification; ANN & classification methods; image segmentation & object oriented classification; automatic feature extraction, automatic extraction of dematrician objects</td>
<td>Fuzzy & ANN Classification; Multi resolution segmentation of image objects; Texture Analysis and Texture Based segmentation; automatic linear feature extraction.</td>
</tr>
<tr>
<td>2.7.2 Image Processing-II</td>
<td>Advanced classification; fuzzy classification; ANN & classification methods; image segmentation & object oriented classification; automatic feature extraction, automatic extraction of dematrician objects</td>
<td>Ground survey; GCP collection, processing & data integration; stereo restitution of satellite images; feature extraction in 2D & 3D model; digital cartography, digital earth model.</td>
</tr>
<tr>
<td>2.7.3 Digital Photogrammetry and Mapping</td>
<td>Conventional survey techniques, Geodesy, Integration from different source for large scale mapping, GNSS, mobile mapping, Aerial & satellite Photogrammetry, data processing for stereo generation, ortho-rectification; Digital cartography, 3D simulation, visualization & terrain analysis</td>
<td>Ground survey; GCP collection, processing & data integration; stereo restitution of satellite images; feature extraction in 2D & 3D model; digital cartography, digital earth model.</td>
</tr>
<tr>
<td>Subject</td>
<td>Major Topics (Theory)</td>
<td>Major Topics (Practical Exercises / Application)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2.7.4 Surface Generation Techniques</td>
<td>DSM generation: limitations of photogrammetry; extraction using digital camera data & alternatives; lidar & airborne photogrammetry; data processing for surface generation; SAR & interferometry; SAR data processing; LiDAR waveform data processing; filtering & elevation information; close-range photogrammetry.</td>
<td>interferometric processing for DEM generation; polarimetric SAR data processing; LiDAR waveform data processing; filtering & elevation information; close-range photogrammetry.</td>
</tr>
<tr>
<td>2.8 Geoinformatics</td>
<td></td>
<td>Special database creation, design, schema creation, file storage; data type insertion & retrieval; spatial queries; optimization & index creation; multi-criteria decision modeling & agent-based modeling.</td>
</tr>
<tr>
<td>2.8.1 Spatial database Architectures & modeling</td>
<td>Database overview: spatial databases, types & structures; conceptual data modeling, UML, database design & topology; relation model; spatial database storage & retrieval; Geospatial modeling & its classification, decision modeling concepts, decision support systems; agent-based modeling & its applications.</td>
<td>Familiarization of programming language variables & functions: data structure & object-oriented programming: MapInfo & Python mapping library, KML parsing, Python library.</td>
</tr>
<tr>
<td>2.8.2 Programming in Geodata modeling</td>
<td>Basics programming concepts, expressions, statements, conditionals & loops: data structure and object-oriented programming; open source programming APIs: scientific plotting, database connectivity, imaging library, KML parsing, API, geospatial abstraction library, customizing open source GIS software.</td>
<td>Internet, GIS, web designing, server-side scripting, open source geo-network metadata cataloguing system creation & dissemination of OGC WMS & WFS services, Google & Microsoft APIs; visualization of 3D geometric data & creation of 3D models.</td>
</tr>
<tr>
<td>2.8.3 Web GIS and Geovisualization</td>
<td>Internet technology & Web GIS; Internet GIS, networking protocols & client/server architecture; web programming; distributed GIS, service-oriented architecture, interoperability & standards; web GIS services, OGC standards, open GIS, map servers, OGC WMS & WFS, XML, cloud computing, Geovisualization exploration, 3D mapping.</td>
<td>Exploratory data analysis, probability & statistics, regression & correlation, image generation at varied spatial resolutions; Taylor series expansion, error & uncertainty modeling & propagation; modeling spatial structure from point samples; assessing quality of spatial predictions: variogram, semi-variogram, geostatistical estimation using kriging, universal kriging & block kriging.</td>
</tr>
<tr>
<td>2.8.4 Spatial Data Quality & Geostatistics</td>
<td>Concepts of probability & statistics, regression & least squares, quality & fitness of measurement data; uncertainty & its quantification; Attribute & positional uncertainty, sources, precision; Error & uncertainty propagation, Taylor series approximation, uncertainty cascade, error models, systematic error & model uncertainty, spatial variation models & dependence measures; spatial sampling and modeling; Modeling the variogram, Ordinary Kriging, Universal Kriging, Collocated Kriging, Indicator Kriging.</td>
<td>Exploratory data analysis, probability & statistics, regression & correlation, image generation at varied spatial resolutions; Taylor series expansion, error & uncertainty modeling & propagation; modeling spatial structure from point samples; assessing quality of spatial predictions: variogram, semi-variogram, geostatistical estimation using kriging, universal kriging & block kriging.</td>
</tr>
</tbody>
</table>
CENTRE FOR SPACE SCIENCE AND TECHNOLOGY EDUCATION IN ASIA AND THE PACIFIC
(Affiliated to the United Nations)

APPLICATION FORM FOR 19™ POST GRADUATE COURSE IN REMOTE SENSING AND GIS
(JULY 01, 2014 TO MARCH 31, 2015)
At
Indian Institute of Remote Sensing (ISRO), Dehradun, India

RSGIS - 19
(For office use only)

Application No.:
Date received:

Important:
All the correspondence from CSSTEAP (issue of admission letter, e-tickets for travel, queries, etc) with the applicants will be on internet and sometimes on phone (Home/Office); therefore kindly ensure that email-id, phone, fax, etc. are correctly and clearly mentioned.

(Please type or use CAPITAL LETTERS)

1. Name: (As mentioned in the passport)
Dr./Mr./Ms./
First
Middle
Last

2. Father’s Name:
3. Name of mother/husband/wife

4. Date of Birth (DD/MM/YY)
5. Place of Birth:

6. Gender (Male/Female)
7. Nationality:

8. Contact Information: Present official Address (Valid until date)

Contact number (Please give complete Phone no. with country, city codes)

Office (Tel)
Office (Fax)

Mobile:
E-mail

Important:
a) Interested persons may detach last 4 pages from this brochure and use them as Application Form.
b) It is essential that full passport details are mentioned in the Application Form.
c) Application Forms without passport details may not be considered.
d) Providing alternate email-id would ensure timely communication with applicants.
e) For faster communication with the applicants CSSTEAP Secretariat will be using your email-id for all purposes (e.g. admission letter, air tickets and logistic arrangements).
9. Permanent home Address (in your country).

Contact number (Please give complete Phone no. with country, city codes)

Home (Tel) Home (Fax)

E-mail (alternate, preferably Gmail or Yahoo)

10. Nearest International airport (Specify the place/city)

11. ACADEMIC QUALIFICATIONS (mandatory)*

<table>
<thead>
<tr>
<th>Degree / (Bachelor/Master) Diploma</th>
<th>Duration of Course (mention from which year to year)</th>
<th>University / Institution</th>
<th>Year of Passing</th>
<th>Grade / percentage</th>
<th>Major Subjects/specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*(Enclose copies of Degree/Diploma/Certificates/marks/grades obtained etc. and their certified transcription in English)

Major Subject in last examination: Area of Specialization

Medium of instruction/language: TOEFL Score (Proficiency in English)

Reading: Fair/Good/Very Good

Writing: Fair/Good/Very Good (Please tick the option)

Spoken: Fair/Good/Very Good

Enclose certified copies of marks/grades of degree, diploma, TOEFL (validity period), etc. certificates and their certified translations in English

12. DETAILS OF EXPERIENCE OF LAST FIVE YEARS

(a) Present Position: Present Responsibilities*

Organization and Complete Address

Date of joining this Organization (dd/mm/year)

* Attach additional sheets giving details of your technical activity during last one year.

(b) Experience during past 15 years:

<table>
<thead>
<tr>
<th>Name of Organization(s)</th>
<th>Position(s)/Post(s) held</th>
<th>Nature of work done</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13. (a) Activities & Projects in which your present organization is engaged (mandatory) and nature of work done

(b) Main Scientific/Technical facilities available in your organization *(including approximate number and type of computers, type of software available etc.)*

14. Have you done any other course from CSSTEAP (If yes, please give details including theme and year).

15. How this Course will help you in your work/organization? Please describe below.

16. DETAILS OF PASSPORT: Passport details are essential for selection of candidates and send copy of the passport wherever available.

<table>
<thead>
<tr>
<th>Passport Number</th>
<th>Place of Issue (City and Country)</th>
<th>Date of Issue</th>
<th>Passport valid up to</th>
<th>Issuing Authority</th>
<th>Whether previously visited India if so place and date of last visit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. PHYSICAL FITNESS:

a) Are you suffering from any recurring/chronic/serious communicable disease which may affect your study program in India?

b) If yes, please specify nature of illness *(Candidates are advised to attach medical fitness certificate from a government hospital or government recognized hospital on hospital letter head)*

18. How do you propose to meet the international travel & stay expenses in India? *(Preference will be given to those who will make their own travel arrangement)*

19. DECLARATION BY THE CANDIDATE

I have read the announcement brochure and will abide by the rules and regulations of the Centre. I have made / am making/have not made travel arrangements for attending the course and local expenses for the period of stay in India.

Date:

Place: ____________________________

Signature of Candidate
SPONSORING NOMINATING AGENCY CERTIFICATE

Mr./Ms. __, working in this organization is sponsored by __, to attend the 19th Post Graduate Course in Remote Sensing & Geographic Information System (RS & GIS) to be held at Indian Institute of Remote Sensing, Dehradun, India during July 1, 2014 - March 31, 2015. We envisage to utilize his/her experience in specific tasks of our organization/agency. The candidate will be allowed to carry out a Research Project for a period of one year after his/her return to this country and will be provided with full facilities required for the same.

a) He/She will be / will not be provided international travel support.

b) He/She will be/will not be provided financial assistance for the period of stay in India.

c) He/She possesses adequate knowledge of English Language required for the course

Date: ___________________________ Signature: ___________________________

Place: ___________________________ Name in Capital Letters: ___________________________

Designation: ___________________________ Phone No.: ___________________________

Fax No.: ___________________________ E-mail: ___________________________

(Official seal of the sponsoring / nominating authority)

Note: Application without official seal of sponsoring or nominating authority and their details will not be considered.

FORWARDING NOTE BY THE RESPECTIVE INDIAN EMBASSY IN YOUR COUNTRY

This is to forward the application of Mr./Ms. (Specify the country name here) for the 9 months Post Graduate Course in RS & GIS-19 of CSSTEAP, to be held at Indian Institute of Remote Sensing, Dehradun, India, during July 1, 2014 to March 31, 2015.

Date: ___________________________ Signature: ___________________________

Place: ___________________________ Name: ___________________________

Designation: ___________________________ Phone No.: ___________________________

Fax No.: ___________________________ Email: ___________________________

(Official Seal of the Embassy/High Commission of India)

N.B: Please send an advance copy of the application form duly signed by the sponsoring agency to the Course Director, RS & GIS-19, Indian Institute of Remote Sensing by fax (+91-135-2740783) for quick processing. Original copy to be sent through Embassy/High Commission of respective country, at New Delhi duly signed by the sponsoring or nominating authority.

IMPORTANT

- The Application which is not complete in all respects is likely to be rejected.
- Candidates must attach copies of certificates of:
 a) Medical fitness to attend the course: including Chest X-ray (PA), Blood Test (including Random Blood Sugar, HIV, Hepatitis Ag, Urine complete) in case any medical information requiring attention is hidden and if found during the course, the centre will be compelled to send the candidate back home.
 b) Smoking and consuming alcoholic drinks in class room and office campus is prohibited.
 c) Highest degree obtained (Degree certificate and marks sheet/grade card)
 d) Proof of Proficiency in English needs to be provided.
 e) All Degree Certificates, if not in English, may please be translated in English and attested by the Head of the organization or transcript in English can also be submitted.
Valuedictory Function of International Course on Hyperspectral
Remote Sensing & Its Applications

Countrywise output from
CSSTEAP programme